Thermo-mechanical characterization of polypyrrole compliance using system identification

نویسنده

  • Ian W. Hunter
چکیده

Conducting polymers such as polypyrrole are studied as novel biologically inspired actuators. Their capacity to generate stresses of up to 5 MPa, strains of up to 10% at low voltages (2 V) make them ideal candidates to be used as artificial muscle materials. It has been shown that the modulus of polypyrrole can change when the material is electrochemically excited. In this paper we develop a technique that uses a stochastic stress input that can be used to measure the compliance frequency response (between 10 Hz and 100 Hz) of polypyrrole in-situ. We validate the compliance calculated from the stochastic stress input by comparing it with the compliance calculated from a single sinusoidal stress input. We also measure the compliance as a function of temperature using both techniques and show that the stochastic compliance follows the same trends as the compliance calculated from single sinusoidal stress input.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stochastic System Identification of the Compliance of Conducting Polymers

Conducting polymers such as polypyrrole, polythiophene and polyaniline are currently studied as novel biologically inspired actuators. The actuation mechanism of these materials depends upon the motion of ions in and out of the polymer film during electrochemical cycling. The diffusion of ions into the bulk of the film causes the dynamic mechanical compliance (or modulus) of the material to cha...

متن کامل

Isolation, identification and characterization of thermo-tolerant acetic acid bacteria for semi-continuous acetous fermentation at high temperature

Nowadays, vinegar is industrially produced by mesophilic acetic acid bacteria (AAB). However, temperature fluctuation during acetous fermentation is inevitable, and may cause process disturbances. This can be mostly avoided using thermo-tolerant AAB. The main purpose of the present study was to isolate thermo-tolerant AAB. Fermentation performances were then evaluated. Twenty-eight different is...

متن کامل

Isolation, identification and characterization of thermo-tolerant acetic acid bacteria for semi-continuous acetous fermentation at high temperature

Nowadays, vinegar is industrially produced by mesophilic acetic acid bacteria (AAB). However, temperature fluctuation during acetous fermentation is inevitable, and may cause process disturbances. This can be mostly avoided using thermo-tolerant AAB. The main purpose of the present study was to isolate thermo-tolerant AAB. Fermentation performances were then evaluated. Twenty-eight different is...

متن کامل

Numerical and Analytical Investigation of a Cylinder Made of Functional Graded Materials under Thermo-Mechanical Fields

This research develops thermo-elastic analysis of a functionally graded cylinder under thermo-mechanical loadings. Heat conduction equation in cylindrical coordinate system is solved. Thermal conductivity coefficient is graded along the radial direction. By considering a symmetric distribution of temperature, loading and boundary conditions, strain-displacement and stress-strain relations can b...

متن کامل

A Nano-indentation Identification Technique for Viscoelastic Constitutive Characteristics of Periodontal Ligaments

Introduction: Nano-indentation has recently been employed as a powerful tool for determining the mechanical properties of biological tissues on nano and micro scales. A majority of soft biological tissues such as ligaments and tendons exhibit viscoelastic or time-dependent behaviors. The constitutive characterization of soft tissues is among very important subjects in clinical medicine and espe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010